metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-[4-(methylsulfanyl)phenyl]-1*H*benzimidazol-3-ium} tetrabromidocuprate(II) dihydrate

M. N. Manjunatha,^a Mohamed Ziaulla,^a Ravish Sankolli,^b Noor Shahina Begum^a* and K. R. Nagasundara^a

^aDepartment of Chemistry, Bangalore University, Bangalore 560 001, India, and ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: noorsb@rediffmail.com

Received 15 March 2011; accepted 6 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; *R* factor = 0.059; w*R* factor = 0.127; data-to-parameter ratio = 15.1.

The asymmetric unit of the title compound, $(C_{14}H_{13}N_2S)_2$ -[CuBr₄]·2H₂O, contains two cations, one anion and two solvent water molecules that are connected *via* O-H···Br, N-H···Br and N-H···O hydrogen bonds into a twodimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along [100]. The central Cu^{II} atom of the anion is in a distorted tetrahedral environment.

Related literature

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough *et al.* (1999); Preston (1974); Zhu *et al.* (2000). For related structures, see: Ziaulla *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{14}{\rm H}_{13}{\rm N}_{2}{\rm S})_{2}[{\rm CuBr_{4}}]\cdot{\rm 2H_{2}O} \\ M_{r} = 901.86 \\ {\rm Triclinic,} \ P\overline{\rm I} \\ a = 7.6878 \ (5) \ {\rm \mathring{A}} \\ b = 11.8358 \ (7) \ {\rm \mathring{A}} \\ c = 18.5485 \ (9) \ {\rm \mathring{A}} \\ \alpha = 85.305 \ (4)^{\circ} \\ \beta = 84.778 \ (5)^{\circ} \end{array}$

 $\begin{array}{l} \gamma = 80.692 \ (5)^{\circ} \\ V = 1654.74 \ (17) \ \text{\AA}^3 \\ Z = 2 \\ \text{Mo } K\alpha \ \text{radiation} \\ \mu = 5.65 \ \text{mm}^{-1} \\ T = 296 \ \text{K} \\ 0.18 \ \times \ 0.16 \ \times \ 0.16 \ \text{mm} \end{array}$

Data collection

```
Bruker SMART APEX CCD
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
T_{\rm min} = 0.430, T_{\rm max} = 0.465
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.127$ S = 1.00 5805 reflections 384 parameters6 restraints 27134 measured reflections 5805 independent reflections 3344 reflections with $I > 2\sigma(I)$ $R_{int} = 0.110$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.75\ \text{e}\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.59\ \text{e}\ \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdotsO1^{i}$	0.86	1.86	2.703 (8)	165
N2−H2···Br3 ⁱⁱ	0.86	2.44	3.275 (6)	162
$O1 - H1D \cdots Br3^{iii}$	0.85 (6)	2.55 (7)	3.344 (6)	155
$O2-H2A\cdots Br2^{iii}$	0.83 (4)	2.96 (6)	3.735 (6)	155
$O1 - H1E \cdots Br1$	0.84 (7)	2.53 (7)	3.359 (6)	170
$O2 - H2B \cdots Br4$	0.85 (5)	2.77 (7)	3.597 (6)	166

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2356).

References

- Bruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665-2668.
- Preston, P. N. (1974). Chem. Rev. 74, 279-314.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.
- Ziaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, 0341–0342.

Acta Cryst. (2011). E67, m578 [doi:10.1107/S1600536811012840]

Bis{2-[4-(methylsulfanyl)phenyl]-1*H*-benzimidazol-3-ium} tetrabromidocuprate(II) dihydrate

M. N. Manjunatha, M. Ziaulla, R. Sankolli, N. S. Begum and K. R. Nagasundara

Comment

The synthesis of benzimidazoles makes use of solid-phase synthesis *via o*-nitroanilines (Preston *et al.*, 1974; Huang &Scarborough, 1999). Benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu *et al.*, 2000). In addition benzimidazole derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic and antipyretic. In the title compound, as shown in Fig. 1, there are two cations, one tetrabromidocopper(II) anion and two solvent water molecules in the asymmetric unit. The Cu^{II} atom shows strongly distorted tetrahedral geometry, coordinating with four terminal bromine atoms with the bond lengths in the range 2.3389 (1) Å to 2.4084 (1) Å. The Br—Cu—Br bond angles are between 96.18 (4)° and 139.53 (6)°. The benzimidazole and thiomethyl phenyl rings are virtually planar and inclined at an dihedral angle 2.67 (2)° . The bond lengths and angles for the benzimidazole cation of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Ziaulla *et al.*, 2011). The crystal structure is stabilized by N—H···O, O—H···Br and N—H···Br hydrogen bonds (Fig.2).

Experimental

An ethanolic solution (15 ml) of the 2-(4-methylsulfanyl phenyl)-1*H*- benzimidazole) (0.960 g, 2 mmol) was added to a solution of copper(II) bromide (0.446 g, 1 mmol) in ethanol (25 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml). The mixture was refluxed for nearly six hours during which yellow crystals suitable for X-ray analysis were obtained. The crystals were washed with cold ethanol and dried in vacuum over P_2O_5 (yield 1.2 g, 85%).

Refinement

The H atoms were placed at calculated positions and refined in the riding model approximation with C—H= 0.93-0.96 Å and N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms of water molecules were refined with restraints imposed on the O–H and H…H distances [O–H = 0.85 (2) Å, H…H = 1.39 (4) Å] and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. *ORTEP* (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids.

Fig. 2. Crystal packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Bis{2-[4-(methylsulfanyl)phenyl]-1H-benzimidazol-3-ium} tetrabromidocuprate(II) dihydrate

Z = 2
F(000) = 886
$D_{\rm x} = 1.810 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5805 reflections
$\theta = 2.7 - 25.0^{\circ}$
$\mu = 5.65 \text{ mm}^{-1}$
T = 296 K
Block, yellow
$0.18\times0.16\times0.16~mm$

Data collection

Bruker SMART APEX CCD detector diffractometer	5805 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3344 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.110$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998)	$h = -9 \rightarrow 9$
$T_{\min} = 0.430, \ T_{\max} = 0.465$	$k = -14 \rightarrow 14$
27134 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.127$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0351P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
5805 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
384 parameters	$\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

xyz $U_{iso}*/U_{eq}$ Br30.84824 (12)0.57905 (7)0.30208 (4)0.0669 (3)Br20.87267 (11)0.78902 (7)0.15526 (5)0.0683 (3)Cu10.66741 (12)0.74774 (8)0.25235 (5)0.0514 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Br2	0.87267 (11)	0.78902 (7)	0.15526 (5)	0.0683 (3)
Cu1	0.66741 (12)	0.74774 (8)	0.25235 (5)	0.0514 (3)
Br4	0.53451 (13)	0.82526 (8)	0.35966 (5)	0.0790 (3)
Br1	0.41165 (11)	0.76741 (8)	0.18456 (4)	0.0704 (3)
S1	0.6325 (3)	0.24760 (18)	0.32773 (11)	0.0633 (6)
S2	0.9931 (3)	0.15553 (19)	0.17091 (12)	0.0709 (7)
N1	0.0725 (8)	0.7087 (5)	0.4564 (3)	0.0510 (17)
H1	0.0834	0.7291	0.4108	0.061*
N2	0.1042 (7)	0.6081 (5)	0.5582 (3)	0.0455 (15)
H2	0.1382	0.5532	0.5896	0.055*
N3	0.6882 (8)	0.5966 (5)	-0.0737 (3)	0.0483 (16)
Н3	0.7331	0.5473	-0.1045	0.058*
N4	0.6053 (7)	0.6754 (5)	0.0272 (3)	0.0491 (16)
H4	0.5875	0.6850	0.0729	0.059*
01	0.2089 (9)	0.5361 (5)	0.1865 (3)	0.0744 (18)
O2	0.0818 (8)	0.8287 (6)	0.3236 (3)	0.0755 (17)
H1E	0.263 (9)	0.593 (5)	0.180 (5)	0.113*
H1D	0.103 (5)	0.557 (7)	0.204 (5)	0.113*
H2B	0.188 (5)	0.838 (8)	0.326 (4)	0.113*
H2A	0.070 (10)	0.811 (8)	0.282 (2)	0.113*
C1	0.6852 (11)	0.1254 (6)	0.3895 (4)	0.073 (3)
H1B	0.7592	0.0654	0.3642	0.109*
H1A	0.5782	0.0988	0.4094	0.109*
H1C	0.7466	0.1462	0.4280	0.109*
C2	0.4938 (9)	0.3474 (6)	0.3793 (4)	0.049 (2)
C3	0.4289 (10)	0.4503 (7)	0.3424 (4)	0.059 (2)
H3A	0.4626	0.4628	0.2933	0.071*
C4	0.3167 (9)	0.5329 (6)	0.3772 (4)	0.049 (2)
H4A	0.2709	0.5996	0.3508	0.059*
C5	0.2689 (9)	0.5208 (6)	0.4504 (4)	0.0406 (18)
C6	0.3317 (9)	0.4189 (6)	0.4874 (4)	0.0435 (18)
Н6	0.2973	0.4073	0.5364	0.052*

C7	0.4443 (10)	0.3339 (6)	0.4531 (4)	0.050 (2)
H7	0.4878	0.2667	0.4795	0.060*
C8	0.1509 (9)	0.6090 (6)	0.4875 (4)	0.0418 (18)
C9	-0.0276 (9)	0.7731 (6)	0.5082 (4)	0.0480 (19)
C10	-0.0077 (9)	0.7088 (6)	0.5740 (4)	0.0460 (19)
C11	-0.0876 (10)	0.7504 (7)	0.6385 (4)	0.058 (2)
H11	-0.0746	0.7078	0.6826	0.070*
C12	-0.1869 (10)	0.8578 (7)	0.6341 (4)	0.063 (2)
H12	-0.2439	0.8880	0.6763	0.075*
C13	-0.2050 (10)	0.9230 (7)	0.5683 (4)	0.064 (2)
H13	-0.2710	0.9961	0.5678	0.077*
C14	-0.1274 (10)	0.8812 (6)	0.5045 (4)	0.063 (2)
H14	-0.1412	0.9239	0.4605	0.076*
C15	1.0901 (10)	0.0542 (6)	0.1072 (4)	0.077 (3)
H15C	1.1793	0.0857	0.0758	0.116*
H15A	1.0005	0.0372	0.0787	0.116*
H15B	1.1429	-0.0150	0.1326	0.116*
C16	0.9121 (9)	0.2772 (6)	0.1158 (4)	0.050 (2)
C17	0.9176 (10)	0.2808 (6)	0.0417 (4)	0.056 (2)
H17	0.9687	0.2168	0.0171	0.067*
C18	0.8455 (9)	0.3818 (6)	0.0031 (4)	0.050 (2)
H18	0.8514	0.3843	-0.0473	0.060*
C19	0.7664 (9)	0.4771 (6)	0.0380 (4)	0.0432 (18)
C20	0.7666 (10)	0.4719 (6)	0.1131 (4)	0.056 (2)
H20	0.7191	0.5363	0.1380	0.067*
C21	0.8361 (10)	0.3726 (6)	0.1511 (4)	0.061 (2)
H21	0.8315	0.3701	0.2015	0.074*
C22	0.6917 (9)	0.5791 (6)	-0.0009 (4)	0.0455 (19)
C23	0.6011 (9)	0.7062 (6)	-0.0912 (4)	0.0435 (18)
C24	0.5622 (10)	0.7637 (7)	-0.1566 (4)	0.061 (2)
H24	0.5965	0.7297	-0.2002	0.073*
C25	0.4703 (11)	0.8735 (7)	-0.1549 (5)	0.066 (2)
H25	0.4428	0.9147	-0.1984	0.080*
C26	0.4178 (10)	0.9240 (7)	-0.0901 (5)	0.064 (2)
H26	0.3564	0.9985	-0.0911	0.077*
C27	0.4541 (10)	0.8667 (6)	-0.0245 (4)	0.060 (2)
H27	0.4172	0.8999	0.0192	0.071*
C28	0.5485 (10)	0.7572 (6)	-0.0269 (4)	0.050 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br3	0.0774 (6)	0.0605 (6)	0.0514 (5)	0.0114 (5)	0.0023 (4)	0.0136 (4)
Br2	0.0606 (6)	0.0670 (6)	0.0700 (6)	-0.0054 (4)	0.0039 (5)	0.0200 (5)
Cu1	0.0536 (6)	0.0493 (6)	0.0477 (6)	0.0012 (5)	-0.0026 (5)	-0.0023 (4)
Br4	0.0916 (7)	0.0806 (7)	0.0606 (6)	0.0093 (6)	-0.0038 (5)	-0.0273 (5)
Br1	0.0521 (5)	0.1001 (7)	0.0562 (6)	0.0001 (5)	-0.0059 (4)	-0.0116 (5)
S1	0.0654 (15)	0.0619 (14)	0.0568 (13)	0.0100 (12)	-0.0091 (11)	-0.0053 (11)

S2	0.0672 (15)	0.0632 (15)	0.0771 (16)	-0.0009 (12)	-0.0111 (13)	0.0147 (12)
N1	0.058 (4)	0.042 (4)	0.050 (4)	-0.001 (3)	-0.008 (3)	0.002 (3)
N2	0.049 (4)	0.050 (4)	0.037 (4)	-0.007 (3)	-0.009 (3)	0.001 (3)
N3	0.062 (4)	0.042 (4)	0.039 (4)	-0.001 (3)	-0.002 (3)	-0.008 (3)
N4	0.057 (4)	0.042 (4)	0.047 (4)	-0.008 (3)	-0.004 (3)	0.001 (3)
01	0.078 (5)	0.078 (4)	0.060 (4)	0.008 (3)	0.003 (4)	-0.017 (3)
02	0.084 (4)	0.089 (5)	0.054 (4)	-0.021 (4)	-0.011 (3)	0.011 (3)
C1	0.085 (7)	0.051 (5)	0.080 (6)	0.000 (5)	-0.018 (5)	0.000 (5)
C2	0.033 (4)	0.054 (5)	0.059 (5)	0.002 (4)	-0.013 (4)	-0.005 (4)
C3	0.053 (5)	0.072 (6)	0.044 (5)	0.005 (4)	-0.002 (4)	0.005 (4)
C4	0.048 (5)	0.052 (5)	0.041 (5)	0.005 (4)	-0.004 (4)	0.004 (4)
C5	0.045 (4)	0.038 (4)	0.039 (4)	-0.008 (3)	-0.006 (3)	0.004 (3)
C6	0.054 (5)	0.047 (4)	0.032 (4)	-0.017 (4)	-0.004 (4)	0.002 (3)
C7	0.059 (5)	0.047 (5)	0.045 (5)	-0.010 (4)	-0.010 (4)	0.008 (4)
C8	0.039 (4)	0.043 (4)	0.044 (5)	-0.008 (3)	-0.007 (4)	0.000 (3)
C9	0.049 (5)	0.051 (5)	0.042 (5)	-0.008 (4)	0.000 (4)	0.002 (4)
C10	0.045 (5)	0.050 (5)	0.045 (5)	-0.009 (4)	-0.004 (4)	-0.009 (4)
C11	0.052 (5)	0.066 (6)	0.054 (5)	-0.004 (4)	-0.004 (4)	0.001 (4)
C12	0.058 (6)	0.063 (6)	0.063 (6)	-0.002 (5)	0.000 (4)	-0.009 (5)
C13	0.062 (6)	0.055 (5)	0.068 (6)	0.010 (4)	0.001 (5)	-0.006 (5)
C14	0.070 (6)	0.048 (5)	0.067 (6)	0.006 (4)	-0.015 (5)	0.002 (4)
C15	0.063 (6)	0.051 (5)	0.112 (7)	-0.001 (4)	0.003 (5)	0.006 (5)
C16	0.047 (5)	0.047 (5)	0.056 (5)	-0.008 (4)	-0.005 (4)	0.003 (4)
C17	0.055 (5)	0.045 (5)	0.065 (6)	-0.002 (4)	0.000 (4)	-0.007 (4)
C18	0.060 (5)	0.052 (5)	0.040 (4)	-0.010 (4)	-0.007 (4)	-0.007 (4)
C19	0.048 (5)	0.033 (4)	0.047 (5)	-0.004 (3)	0.001 (4)	-0.004 (3)
C20	0.073 (6)	0.053 (5)	0.041 (5)	-0.005 (4)	-0.008 (4)	0.002 (4)
C21	0.078 (6)	0.053 (5)	0.048 (5)	-0.005 (5)	0.001 (4)	0.010 (4)
C22	0.049 (5)	0.041 (4)	0.048 (5)	-0.014 (4)	-0.003 (4)	-0.003 (4)
C23	0.039 (4)	0.042 (4)	0.051 (5)	-0.007 (4)	-0.006 (4)	0.000 (4)
C24	0.069 (6)	0.064 (6)	0.052 (5)	-0.021 (5)	-0.011 (4)	0.008 (4)
C25	0.077 (6)	0.061 (6)	0.067 (6)	-0.025 (5)	-0.034 (5)	0.022 (5)
C26	0.063 (6)	0.047 (5)	0.079 (7)	0.000 (4)	-0.020 (5)	0.004 (5)
C27	0.063 (6)	0.047 (5)	0.069 (6)	-0.005 (4)	-0.009 (5)	-0.008 (4)
C28	0.062 (5)	0.046 (5)	0.039 (5)	-0.003 (4)	-0.007 (4)	0.000 (4)

Geometric parameters (Å, °)

Br3—Cu1	2.4091 (11)	С6—Н6	0.9300
Br2—Cu1	2.3579 (12)	С7—Н7	0.9300
Cu1—Br4	2.3396 (12)	C9—C14	1.382 (9)
Cu1—Br1	2.3990 (12)	C9—C10	1.391 (9)
S1—C2	1.743 (7)	C10-C11	1.385 (9)
S1—C1	1.787 (7)	C11—C12	1.373 (9)
S2—C16	1.758 (7)	C11—H11	0.9300
S2—C15	1.782 (7)	C12—C13	1.395 (10)
N1—C8	1.346 (8)	C12—H12	0.9300
N1—C9	1.376 (8)	C13—C14	1.368 (9)
N1—H1	0.8600	C13—H13	0.9300

$N_2 - C10$ 1.38 (8) C15 - H15C 0.9600 $N_2 - H2$ 0.8600 C15 - H15A 0.9600 $N_3 - C22$ 1.351 (8) C15 - H15B 0.9600 $N_3 - H3$ 0.8600 C16 - C21 1.370 (9) $N_3 - H3$ 0.8600 C16 - C21 1.373 (8) $N_4 - C22$ 1.342 (8) C17 - C18 1.402 (9) $N_4 - C28$ 1.386 (8) C17 - H17 0.9300 $O1 - H1E$ 0.84 (7) C18 - H18 0.9300 $O1 - H1E$ 0.84 (7) C18 - H18 0.9300 $O1 - H1B$ 0.9600 C20 - C20 1.390 (9) $O2 - H2B$ 0.85 (5) C19 - C22 1.421 (9) $O2 - H2B$ 0.85 (5) C19 - C22 1.421 (9) $O2 - H2B$ 0.85 (6) C20 - H20 0.9300 C1 - H1B 0.9600 C21 - H21 0.9300 C2 - C7 1.390 (9) C24 - C25 1.376 (9) C2 - C3 1.391 (9) C24 - C25 1.376 (9) C3 - C4 1.358 (9) C24 - H24 0.9300 C3 - C4 1.3
N2-H2 0.8600 C15-H15A 0.9600 N3-C22 1.351 (8) C15-H15B 0.9600 N3-C23 1.388 (8) C16-C17 1.370 (9) N3-H3 0.8600 C16-C12 1.373 (9) N4-C22 1.342 (8) C17-C18 1.402 (9) N4-C22 1.342 (8) C17-C18 0.9300 N4-H4 0.8600 C18-C19 1.373 (8) O1-H1E 0.84 (7) C18-H18 0.9300 O1-H1D 0.85 (6) C19-C20 1.390 (9) O2-H2B 0.85 (5) C19-C22 1.421 (9) O2-H2A 0.84 (2) C20-C21 1.376 (9) C1-H1B 0.9600 C21-H21 0.9300 C1-H1A 0.9600 C23-C24 1.377 (10) C3-C4 1.358 (9) C24-C25 1.377 (10) C3-C4 1.358 (9) C24-H24 0.9300 C4-C5 1.376 (9) C25-C26 1.385 (10) C4-C5 1.377 (8) C26-H26 0.9300 C5-C6 1.377 (8) C26-H26 0.9300 C5-C6
N3 - C22 1.351 (8) C15 - H15B 0.600 N3 - C23 1.388 (8) C16 - C17 1.370 (9) N3 - H3 0.8600 C16 - C21 1.373 (9) N4 - C22 1.342 (8) C17 - C18 1.402 (9) N4 - C28 1.386 (8) C17 - C18 0.9300 N4 - H4 0.8600 C18 - C19 1.373 (8) O1 - H1E 0.84 (7) C18 - H18 0.9300 O2 - H2B 0.85 (6) C19 - C20 1.390 (9) O2 - H2B 0.85 (5) C19 - C22 1.421 (9) O2 - H2A 0.84 (2) C20 - C21 1.376 (9) C1 - H1B 0.9600 C20 - H20 0.9300 C1 - H1C 0.9600 C23 - C24 1.374 (9) C2 - C7 1.390 (9) C23 - C28 1.379 (9) C2 - C3 1.391 (9) C24 - C25 1.377 (10) C3 - H3A 0.9300 C25 - C26 1.385 (10) C4 - C5 1.376 (9) C25 - H25 0.9300 C4 - C5 1.376 (9) C27 - H27 0.9300 C4 - C41 - Br1 0.9300 <
1.37 (22) 1.38 (8) C16 -C17 1.370 (9) N3-C23 1.38 (8) C16 -C11 1.373 (9) N4-C22 1.342 (8) C17-C18 1.402 (9) N4-C28 1.386 (8) C17-H17 0.9300 N4-C28 1.386 (6) C19-C19 1.373 (8) O1-H1E 0.84 (7) C18-H18 0.9300 O2-H2B 0.85 (5) C19-C22 1.421 (9) O2-H2B 0.85 (5) C19-C22 1.376 (9) C1-H1B 0.9600 C20-H20 0.9300 C1-H1A 0.9600 C21-H21 0.9300 C1-H1C 0.9600 C21-H21 0.9300 C1-H1C 0.9600 C23-C24 1.374 (9) C2-C7 1.390 (9) C24-C25 1.377 (10) C3-C4 1.358 (9) C24-H24 0.9300 C3-H3A 0.9300 C25-C26 1.385 (10) C4-C5 1.376 (9) C27-C28 1.381 (9) C5-C6 1.377 (8) C26-H26 0.9300 C5-C6 1.377 (8) C26-H26 0.9300 C6-C
N3-H3 0.8600 C16-C1 1.373 (9) N4-C22 1.342 (8) C17-C18 1.402 (9) N4-C28 1.386 (8) C17-H17 0.9300 N4-H4 0.8600 C18-C19 1.373 (8) O1-H1E 0.84 (7) C18-H18 0.9300 O1-H1D 0.85 (6) C19-C20 1.390 (9) O2-H2B 0.85 (5) C19-C22 1.421 (9) O2-H2A 0.84 (2) C20-H2O 0.9300 C1-H1B 0.9600 C21-H21 0.9300 C1-H1A 0.9600 C23-C24 1.377 (9) C2-C7 1.390 (9) C23-C28 1.379 (9) C2-C7 1.390 (9) C24-C25 1.377 (10) C3-C4 1.358 (9) C24-H24 0.9300 C3-H3A 0.9300 C25-C26 1.385 (10) C4-C5 1.377 (8) C26-C27 1.373 (10) C5-C6 1.377 (8) C26-H26 0.9300 C5-C6 1.374 (9) C27-C28 1.381 (9) C6-C7 1.374 (9) C27-C28 1.381 (9) C6-C7<
NA - C2 1.342 (8) C17-C18 1.402 (9) N4C28 1.386 (8) C17-H17 0.9300 N4-H4 0.8600 C18-C19 1.373 (8) O1-H1E 0.84 (7) C18-H18 0.9300 O1-H1D 0.85 (6) C19-C22 1.421 (9) O2-H2B 0.85 (5) C19-C22 1.421 (9) O2-H2A 0.84 (2) C20-C21 1.376 (9) C1-H1B 0.9600 C21-H20 0.9300 C1-H1A 0.9600 C21-H21 0.9300 C1-H1C 0.9600 C23-C28 1.379 (9) C2-C7 1.390 (9) C23-C28 1.377 (10) C3-C4 1.358 (9) C24-H24 0.9300 C3-C4 1.358 (9) C24-H24 0.9300 C4-C5 1.376 (9) C25-C26 1.385 (10) C4-C5 1.376 (9) C25-C26 1.385 (10) C5-C6 1.377 (8) C26-C47 1.373 (10) C5-C8 1.443 (9) C27-C28 1.381 (9) C6-C7 1.374 (9) C27-H27 0.9300 C5
NA $-C22$ 1.356 (8)C17 $-H17$ 0.9300N4 $-H4$ 0.8600C18 $-C19$ 1.373 (8)O1 $-H1E$ 0.84 (7)C18 $-H18$ 0.9300O1 $-H1D$ 0.85 (6)C19 $-C20$ 1.390 (9)O2 $-H2B$ 0.85 (5)C19 $-C22$ 1.421 (9)O2 $-H2A$ 0.84 (2)C20 $-C21$ 1.376 (9)C1 $-H1B$ 0.9600C20 $-H20$ 0.9300C1 $-H1B$ 0.9600C20 $-H20$ 0.9300C1 $-H1A$ 0.9600C23 $-C24$ 1.374 (9)C2 $-C7$ 1.390 (9)C23 $-C28$ 1.377 (10)C3 $-C4$ 1.358 (9)C24 $-C25$ 1.377 (10)C3 $-C4$ 1.358 (9)C24 $-H24$ 0.9300C3 $-H3A$ 0.9300C25 $-C26$ 1.385 (10)C4 $-C5$ 1.376 (9)C25 $-H25$ 0.9300C5 $-C6$ 1.377 (8)C26 $-H26$ 0.9300C5 $-C6$ 1.377 (8)C26 $-H26$ 0.9300C5 $-C6$ 1.374 (9)C2 $-H27$ 0.9300C5 $-C8$ 1.443 (9)C2 $-C1-H27$ 0.9300C5 $-C7$ 1.374 (9)C2 $-H27$ 0.9300C5 $-C8$ 1.443 (9)C2 $-C1-H27$ 0.9300C5 $-C8$ 1.443 (9)C2 $-H27$ 0.9300C5 $-C6$ 1.374 (9)C2 $-H27$ 0.9300C5 $-C1$ 1.374 (9)C2 $-H27$ 0.9300C5 $-C28$ 1.443 (9)C1 $-C12-H12$ 119.0Br4 $-Cu1-Br3$ 99.91 (4)C11 $-C12-C13$ 122.0 (7)Br4 $-Cu1-Br3$ 99.91 (4)C11 $-C12-H12$ 119.0Br1 $-Cu1-Br$
NA - H4 0.8600 $C18 - C19$ $1.373 (8)$ $01 - H1E$ $0.84 (7)$ $C18 - H18$ 0.9300 $01 - H1D$ $0.85 (6)$ $C19 - C20$ $1.390 (9)$ $02 - H2B$ $0.85 (5)$ $C19 - C22$ $1.421 (9)$ $02 - H2A$ $0.84 (2)$ $C20 - C21$ $1.376 (9)$ $C1 - H1B$ 0.9600 $C20 - H20$ 0.9300 $C1 - H1A$ 0.9600 $C21 - H21$ 0.9300 $C1 - H1C$ 0.9600 $C23 - C24$ $1.374 (9)$ $C2 - C7$ $1.390 (9)$ $C23 - C28$ $1.377 (10)$ $C3 - C4$ $1.358 (9)$ $C24 - C25$ $1.377 (10)$ $C3 - C4$ $1.376 (9)$ $C25 - C26$ $1.385 (10)$ $C4 - C5$ $1.376 (9)$ $C25 - H25$ 0.9300 $C3 - H4A$ 0.9300 $C26 - C27$ $1.373 (10)$ $C5 - C6$ $1.377 (8)$ $C26 - H26$ 0.9300 $C5 - C8$ $1.443 (9)$ $C27 - C28$ $1.381 (9)$ $C6 - C7$ $1.374 (9)$ $C27 - H27$ 0.9300 $C5 - C8$ $1.443 (9)$ $C12 - C11 - H11$ 121.7 $Br4 - Cu1 - Br2$ $139.54 (6)$ $C12 - C11 - H11$ 121.7 $Br4 - Cu1 - Br3$ $99.91 (4)$ $C11 - C12 - C13$ $122.0 (7)$ $Br4 - Cu1 - Br3$ $99.91 (4)$ $C11 - C12 - H12$ 119.0 $Br2 - Cu1 - Br3$ $99.91 (4)$ $C11 - C12 - H12$ 119.0 $Br4 - Cu1 - Br3$ $99.91 (4)$ $C14 - C13 - H13$ 119.4 $C16 - S2 - C15$ $103.5 (4)$ $C12 - C13 - H13$ 119.4
In theDescentDescent01-H1E 0.84 (7) $C18$ —H18 0.9300 01-H1D 0.85 (6) $C19$ —C20 1.390 (9)02-H2B 0.85 (5) $C19$ —C22 1.421 (9)02-H2A 0.84 (2) $C20$ —C21 1.376 (9)C1-H1B 0.9600 $C20$ —H20 0.9300 C1-H1C 0.9600 $C23$ —C24 1.374 (9)C2-C7 1.390 (9) $C23$ —C28 1.379 (9)C2-C7 1.390 (9) $C24$ —C25 1.377 (10)C3-C4 1.358 (9) $C24$ —H24 0.9300 C3-H3A 0.9300 $C25$ —C26 1.385 (10)C4-C5 1.376 (9) $C25$ —H25 0.9300 C4-C5 1.376 (9) $C25$ —H25 0.9300 C5-C6 1.377 (8) $C26$ —H26 0.9300 C5-C8 1.443 (9) $C27$ —C28 1.381 (9)C6-C7 1.374 (9) $C27$ —H27 0.9300 Br4-Cu1-Br1 99.30 (4) $C10$ —C11—H11 21.7 Br2-Cu1-Br1 97.76 (4) $C11$ —C12—C13 122.0 (7)Br4-Cu1-Br3 99.91 (4) $C14$ —C13—H13 119.4 C6-C7 103.5 (4) $C12$ —C13—H13 119.4 C6-C7 103.5 (4) $C12$ —C13—H13 119.4 C16-S2-C15 103.5 (4) $C12$ —C13—H13 119.4 C6-C7 103.5 (4)
C1 -H1D0.81 (1)C10 -H100.85 (6)C19-C201.390 (9)02-H2B0.85 (5)C19-C221.421 (9)02-H2A0.85 (5)C20-C211.376 (9)C1-H1B0.9600C20-H200.9300C1-H1A0.9600C21-H210.9300C1-H1C0.9600C23-C241.374 (9)C2-C71.390 (9)C23-C281.377 (10)C3-C41.358 (9)C24-H240.9300C3-H3A0.9300C25-C261.385 (10)C4-C51.376 (9)C25-H250.9300C4-H4A0.9300C26-C271.373 (10)C5-C61.377 (8)C26-H260.9300C5-C81.443 (9)C27-C281.381 (9)C6-C71.374 (9)C27-C281.381 (9)C6-C71.374 (9)C27-C281.381 (9)C6-C71.374 (9)C27-C111121.7Br4-Cu1-Br199.30 (4)C10-C11-H11121.7Br4-Cu1-Br399.91 (4)C11-C12-C13122.0 (7)Br4-Cu1-Br399.91 (4)C11-C12-H12119.0Br1-Cu1-Br3130.74 (5)C14-C13-H13119.4C16-S2-C15103.5 (4)C12-C13-H13119.4C16-S2-C15103.5 (4)C12-C13-H13119.4C6-N1-C9109.9 (6)C13-C14-C9117.2 (7)C8-N1-C9109.9 (6)C13-C14-H14121.4C8-N2-C10109.9 (6)S2-C15-H15C109.5C8-N2-C10109.9 (6)S2-C15-H15C109.5
OT THD $0.50 + (0)$ $0.1 + 0.25$ $1.421 + (9)$ $02-H2B$ $0.85 + (5)$ $C19-C22$ $1.421 + (9)$ $02-H2A$ $0.84 + (2)$ $C20-C21$ $1.376 + (9)$ $C1-H1B$ 0.9600 $C21-H21$ 0.9300 $C1-H1C$ 0.9600 $C23-C24$ $1.374 + (9)$ $C2-C7$ $1.390 + (9)$ $C23-C28$ $1.379 + (9)$ $C2-C3$ $1.391 + (9)$ $C24-C25$ $1.377 + (10)$ $C3-C4$ $1.358 + (9)$ $C24-C25$ $1.377 + (10)$ $C3-C4$ $1.358 + (9)$ $C24-C25$ 0.9300 $C3-H3A$ 0.9300 $C25-C26$ $1.385 + (10)$ $C4-C5$ $1.376 + (9)$ $C25-C26$ $1.373 + (10)$ $C5-C6$ $1.377 + (8)$ $C26-H26$ 0.9300 $C5-C6$ $1.377 + (8)$ $C26-H26$ 0.9300 $C5-C6$ $1.377 + (8)$ $C26-H26$ 0.9300 $C5-C8$ $1.443 + (9)$ $C27-C28$ $1.381 + (9)$ $C6-C7$ $1.374 + (9)$ $C27-H27$ 0.9300 $C4-C1-Br2$ $139.54 + (6)$ $C12-C11-H11$ 121.7 $Br4-Cu1-Br1$ $97.76 + (4)$ $C11-C12-C13$ $122.0 + (7)$ $Br4-Cu1-Br3$ $9.91 + (4)$ $C14-C13-C12$ 119.0 $Br1-Cu1-Br3$ $9.91 + (4)$ $C14-C13-C12$ 119.0 $Br1-Cu1-Br3$ $9.91 + (6)$ $C12-C13-H13$ 119.4 $C6-S2-C15$ $103.5 + (4)$ $C14-C13-H13$ 119.4 $C16-S2-C15$ $103.5 + (4)$ $C14-C13-H13$ 119.4 $C8-N1-C9$ $109.9 + (6)$ <
02 - H2A $0.50 (c)$ $0.17 - C22$ $1.471 (9)$ $02 - H2A$ $0.84 (2)$ $C20 - C21$ $1.376 (9)$ $01 - H1B$ 0.9600 $C20 - H20$ 0.9300 $01 - H1A$ 0.9600 $C21 - H21$ 0.9300 $01 - H1C$ 0.9600 $C23 - C24$ $1.374 (9)$ $02 - C7$ $1.390 (9)$ $C23 - C28$ $1.379 (9)$ $02 - C3$ $1.391 (9)$ $C24 - C25$ $1.377 (10)$ $03 - C4$ $1.358 (9)$ $C24 - H24$ 0.9300 $C3 - H3A$ 0.9300 $C25 - C26$ $1.385 (10)$ $C4 - C5$ $1.376 (9)$ $C25 - H25$ 0.9300 $C4 - C5$ $1.377 (8)$ $C26 - C27$ $1.373 (10)$ $C5 - C6$ $1.377 (8)$ $C26 - H26$ 0.9300 $C5 - C6$ $1.374 (9)$ $C27 - C28$ $1.381 (9)$ $C6 - C7$ $1.374 (9)$ $C27 - H27$ 0.9300 $C5 - C8$ $1.443 (9)$ $C27 - H27$ 0.9300 $C5 - C8$ $1.443 (9)$ $C10 - C11 - H11$ 121.7 $Br4 - Cu1 - Br1$ $99.30 (4)$ $C10 - C11 - H11$ 121.7 $Br4 - Cu1 - Br3$ $9.9.91 (4)$ $C11 - C12 - H12$ 119.0 $Br1 - Cu1 - Br3$ $9.9.91 (4)$ $C13 - C12 - H12$ 119.0 $Br1 - Cu1 - Br3$ $9.9.1 (4)$ $C13 - C12 - H12$ 119.0 $Br1 - Cu1 - Br3$ $9.9.1 (4)$ $C13 - C12 - H12$ 119.0 $C2 - C15 - H13$ $10.9.4 (6)$ $C13 - C14 - C13 - H13$ 119.4 $C16 - S2 - C15$ $103.5 (4)$ $C12 - C13 - H13$ <td< td=""></td<>
C2 - HA $0.54(2)$ $C20 - U21$ $1.510(7)$ $C1 - H1B$ 0.9600 $C20 - H20$ 0.9300 $C1 - H1A$ 0.9600 $C21 - H21$ 0.9300 $C1 - H1C$ 0.9600 $C23 - C24$ $1.374(9)$ $C2 - C7$ $1.390(9)$ $C23 - C28$ $1.379(9)$ $C2 - C3$ $1.391(9)$ $C24 - C25$ $1.377(10)$ $C3 - C4$ $1.358(9)$ $C24 - H24$ 0.9300 $C3 - H3A$ 0.9300 $C25 - C26$ $1.385(10)$ $C4 - C5$ $1.376(9)$ $C25 - H25$ 0.9300 $C4 - C5$ $1.377(8)$ $C26 - C27$ $1.373(10)$ $C5 - C6$ $1.377(8)$ $C26 - H26$ 0.9300 $C5 - C8$ $1.443(9)$ $C27 - C28$ $1.381(9)$ $C6 - C7$ $1.374(9)$ $C27 - H27$ 0.9300 $Br4 - Cu1 - Br2$ $139.54(6)$ $C12 - C11 - H11$ 121.7 $Br4 - Cu1 - Br1$ $99.30(4)$ $C10 - C11 - H11$ 121.7 $Br4 - Cu1 - Br3$ $99.91(4)$ $C11 - C12 - C13$ $122.0(7)$ $Br4 - Cu1 - Br3$ $99.91(4)$ $C11 - C12 - H12$ 119.0 $Br1 - Cu1 - Br3$ $90.13(4)$ $C13 - C12 - H12$ 119.0 $Br1 - Cu1 - Br3$ $130.74(5)$ $C14 - C13 - H13$ 119.4 $C6 - S2 - C15$ $103.5(4)$ $C12 - C13 - H13$ 119.4 $C6 - S2 - C15$ $103.5(4)$ $C12 - C13 - H13$ 119.4 $C6 - S2 - C15$ $103.5(4)$ $C12 - C13 - H13$ 119.4 $C6 - S2 - C15$ $109.9(6)$ $C13 - C14 - H14$ 121.4
C1-H1B0.5000C20-H200.5000C1-H1A0.9600C21-H210.9300C1-H1C0.9600C23-C241.374 (9)C2-C71.390 (9)C23-C281.379 (9)C2-C31.391 (9)C24-C251.377 (10)C3-C41.358 (9)C24-H240.9300C3-H3A0.9300C25-C261.385 (10)C4-C51.376 (9)C25-H250.9300C4-H4A0.9300C26-C271.373 (10)C5-C61.377 (8)C26-H260.9300C5-C81.443 (9)C27-C281.381 (9)C6-C71.374 (9)C27-H270.9300Br4-Cu1-Br2139.54 (6)C12-C11-H11121.7Br4-Cu1-Br199.30 (4)C10-C11-H11121.7Br4-Cu1-Br399.91 (4)C11-C12-C13122.0 (7)Br4-Cu1-Br399.91 (4)C11-C12-H12119.0Br1-Cu1-Br399.91 (4)C11-C12-H12119.0Br1-Cu1-Br399.91 (4)C14-C13-C12121.2 (7)C2-S1-C1104.8 (4)C14-C13-H13119.4C6-S2-C15103.5 (4)C12-C13-H13119.4C6-S2-C15103.5 (4)C12-C13-H13119.4C6-S2-C15103.5 (4)C12-C13-H14121.4C9-N1-H1125.0C9-C14-H14121.4C8-N1-C9109.9 (6)C13-C14-C9117.2 (7)C8-N1-H1125.0C9-C14-H14121.4C8-N2-C10109.9 (6)S2-C15-H15C109.5
C1-H1A 0.9000 $C_{21}-C_{11}$ 0.9000 C1-H1C 0.9600 $C_{23}-C_{24}$ $1.374 (9)$ C2-C7 $1.390 (9)$ $C_{23}-C_{28}$ $1.379 (9)$ C2-C3 $1.391 (9)$ $C_{24}-C_{25}$ $1.377 (10)$ C3-C4 $1.358 (9)$ $C_{24}-H_{24}$ 0.9300 C3-H3A 0.9300 $C_{25}-C_{26}$ $1.385 (10)$ C4-C5 $1.376 (9)$ $C_{25}-H_{25}$ 0.9300 C4-H4A 0.9300 $C_{26}-C_{27}$ $1.373 (10)$ C5-C6 $1.377 (8)$ $C_{26}-H_{26}$ 0.9300 C5-C8 $1.443 (9)$ $C_{27}-C_{28}$ $1.381 (9)$ C6-C7 $1.374 (9)$ $C_{27}-H_{27}$ 0.9300 Br4-Cu1-Br2 $139.54 (6)$ $C12-C11-H11$ 121.7 Br2-Cu1-Br1 $99.30 (4)$ $C10-C11-H11$ 121.7 Br2-Cu1-Br1 $97.76 (4)$ $C11-C12-C13$ $122.0 (7)$ Br4-Cu1-Br3 $99.91 (4)$ $C11-C12-H12$ 119.0 Br2-Cu1-Br3 $99.91 (4)$ $C11-C12-H12$ 119.0 Br1-Cu1-Br3 $130.74 (5)$ $C14-C13-C12$ $121.2 (7)$ C2-S1-C1 $104.8 (4)$ $C14-C13-H13$ 119.4 C16-S2-C15 $103.5 (4)$ $C12-C13-H13$ 119.4 C8-N1-C9 $109.9 (6)$ $C13-C14-C9$ $117.2 (7)$ C8-N1-H1 125.0 $C9-C15-H15C$ 109.5 C8-N2-C10 $109.9 (6)$ $S2-C15-H15C$ 109.5
C1-mic 0.3000 $C23-C24$ $1.3/4$ (5)C2-C7 1.390 (9) $C23-C28$ 1.379 (9)C2-C3 1.391 (9) $C24-C25$ 1.377 (10)C3-C4 1.358 (9) $C24-H24$ 0.9300 C3-H3A 0.9300 $C25-C26$ 1.385 (10)C4-C5 1.376 (9) $C25-H25$ 0.9300 C4-C5 1.377 (8) $C26-H26$ 0.9300 C5-C6 1.377 (8) $C26-H26$ 0.9300 C5-C6 1.377 (8) $C27-C28$ 1.381 (9)C5-C6 1.374 (9) $C27-C28$ 1.381 (9)C6-C7 1.374 (9) $C27-H27$ 0.9300 Br4-Cu1-Br2 139.54 (6) $C12-C11-H11$ 121.7 Br4-Cu1-Br1 99.30 (4) $C10-C11-H11$ 121.7 Br2-Cu1-Br1 97.76 (4) $C11-C12-C13$ 122.0 (7)Br4-Cu1-Br3 99.91 (4) $C11-C12-H12$ 119.0 Br2-Cu1-Br3 96.13 (4) $C13-C12-H12$ 119.0 Br1-Cu1-Br3 99.91 (4) $C14-C13-C12$ 121.2 (7)C2-S1-C1 104.8 (4) $C14-C13-H13$ 119.4 C6-S2-C15 103.5 (4) $C12-C13-H13$ 119.4 C6-S2-C15 103.5 (4) $C13-C14-C9$ 117.2 (7)C8-N1-C9 109.9 (6) $C13-C14-H14$ 121.4 C8-N2-C10 109.9 (6) $S2-C15-H15C$ 109.5
C2=C7 $1.590(9)$ $C23=C28$ $1.579(9)$ $C2=C3$ $1.391(9)$ $C24=C25$ $1.377(10)$ $C3=C4$ $1.358(9)$ $C24=H24$ 0.9300 $C3=H3A$ 0.9300 $C25=C26$ $1.385(10)$ $C4=C5$ $1.376(9)$ $C25=H25$ 0.9300 $C4=H4A$ 0.9300 $C26=C27$ $1.373(10)$ $C5=C6$ $1.377(8)$ $C26=H26$ 0.9300 $C5=C8$ $1.443(9)$ $C27=C28$ $1.381(9)$ $C5=C7$ $1.374(9)$ $C27=H27$ 0.9300 $C6=C7$ $1.374(9)$ $C27=H27$ 0.9300 $Br4=Cu1=Br1$ $99.30(4)$ $C10=C11=H11$ 121.7 $Br4=Cu1=Br1$ $97.76(4)$ $C11=C12=C13$ $122.0(7)$ $Br4=Cu1=Br3$ $99.91(4)$ $C11=C12=H12$ 119.0 $Br2=Cu1=Br3$ $96.13(4)$ $C13=C12=H12$ 119.4 $C16=S2=C15$ $103.5(4)$ $C12=C13=H13$ 119.4 $C16=S2=C15$ $103.5(4)$ $C12=C13=H13$ 119.4 $C8=N1=H1$ 125.0 $C13=C14=H14$ 121.4 $C8=N2=C10$ $109.9(6)$ $S2=C15=H15C$ 109.5
C2=C3 $1.331(9)$ $C24=C23$ $1.377(10)$ $C3=C4$ $1.358(9)$ $C24=H24$ 0.9300 $C3=H3A$ 0.9300 $C25=C26$ $1.385(10)$ $C4=C5$ $1.376(9)$ $C25=H25$ 0.9300 $C4=H4A$ 0.9300 $C26=C27$ $1.373(10)$ $C5=C6$ $1.377(8)$ $C26=H26$ 0.9300 $C5=C6$ $1.377(8)$ $C26=H26$ 0.9300 $C5=C6$ $1.377(8)$ $C26=H26$ 0.9300 $C5=C6$ $1.374(9)$ $C27=C28$ $1.381(9)$ $C6=C7$ $1.374(9)$ $C27=H27$ 0.9300 $Br4=Cu1=Br2$ $139.54(6)$ $C12=C11=H11$ 121.7 $Br4=Cu1=Br1$ $99.30(4)$ $C10=C11=H11$ 121.7 $Br2=Cu1=Br1$ $97.76(4)$ $C11=C12=H12$ 119.0 $Br4=Cu1=Br3$ $99.91(4)$ $C11=C12=H12$ 119.0 $Br4=Cu1=Br3$ $96.13(4)$ $C13=C12=H12$ 119.0 $Br1=Cu1=Br3$ $90.91(4)$ $C14=C13=H13$ 119.4 $C16=S2=C15$ $103.5(4)$ $C12=C13=H13$ 119.4 $C8=N1=C9$ $109.9(6)$ $C13=C14=C9$ $117.2(7)$ $C8=N1=H1$ 125.0 $C9=C14=H14$ 121.4 $C9=N1=H1$ 125.0 $C9=C14=H14$ 121.4 $C8=N2=H2$ $109.9(6)$ $S2=C15=H15C$ 109.5
C3-C41.358 (9)C24-1240.9300C3-H3A0.9300C25-C261.385 (10)C4-C51.376 (9)C25-H250.9300C4-H4A0.9300C26-C271.373 (10)C5-C61.377 (8)C26-H260.9300C5-C81.443 (9)C27-C281.381 (9)C6-C71.374 (9)C27-H270.9300Br4-Cu1-Br2139.54 (6)C12-C11-H11121.7Br4-Cu1-Br199.30 (4)C10-C11-H11121.7Br2-Cu1-Br197.76 (4)C11-C12-C13122.0 (7)Br4-Cu1-Br399.91 (4)C11-C12-H12119.0Br2-Cu1-Br396.13 (4)C13-C12-H12119.0Br1-Cu1-Br3130.74 (5)C14-C13-C12121.2 (7)C2-S1-C1104.8 (4)C14-C13-H13119.4C16-S2-C15103.5 (4)C12-C13-H13119.4C8-N1-C9109.9 (6)C13-C14-C9117.2 (7)C8-N1-H1125.0C9-C14-H14121.4C9-N1-H1125.0C9-C14-H14121.4C8-N2-C10109.9 (6)S2-C15-H15C109.5C8-N2-C10109.9 (6)S2-C15-H15C109.5
C3—H3A 0.9300 $C23-C26$ $1.383 (10)$ C4—C5 $1.376 (9)$ $C25-H25$ 0.9300 C4—H4A 0.9300 $C26-C27$ $1.373 (10)$ C5-C6 $1.377 (8)$ $C26-H26$ 0.9300 C5-C8 $1.443 (9)$ $C27-C28$ $1.381 (9)$ C6-C7 $1.374 (9)$ $C27-H27$ 0.9300 Br4-Cu1-Br2 $139.54 (6)$ $C12-C11-H11$ 121.7 Br4-Cu1-Br1 $99.30 (4)$ $C10-C11-H11$ 121.7 Br2-Cu1-Br1 $97.76 (4)$ $C11-C12-C13$ $122.0 (7)$ Br4-Cu1-Br3 $99.91 (4)$ $C11-C12-H12$ 119.0 Br2-Cu1-Br3 $96.13 (4)$ $C13-C12-H12$ 119.0 Br1-Cu1-Br3 $130.74 (5)$ $C14-C13-C12$ $121.2 (7)$ C2-S1-C1 $104.8 (4)$ $C14-C13-H13$ 119.4 C16-S2-C15 $103.5 (4)$ $C12-C13-H13$ 119.4 C8-N1-C9 $109.9 (6)$ $C13-C14-C9$ $117.2 (7)$ C8-N1-H1 125.0 $C9-C14-H14$ 121.4 C9-N1-H1 125.0 $C9-C15-H15C$ 109.5 C8-N2-H2 125.0 $S2-C15-H15C$ 109.5
$C4 \rightarrow C5$ $1.376 (9)$ $C25 \rightarrow H25$ 0.9300 $C4 \rightarrow H4A$ 0.9300 $C26 \rightarrow C27$ $1.373 (10)$ $C5 \rightarrow C6$ $1.377 (8)$ $C26 \rightarrow H26$ 0.9300 $C5 \rightarrow C8$ $1.443 (9)$ $C27 \rightarrow C28$ $1.381 (9)$ $C6 \rightarrow C7$ $1.374 (9)$ $C27 \rightarrow H27$ 0.9300 $Br4 \rightarrow Cu1 \rightarrow Br2$ $139.54 (6)$ $C12 \rightarrow C11 \rightarrow H11$ 121.7 $Br4 \rightarrow Cu1 \rightarrow Br1$ $99.30 (4)$ $C10 \rightarrow C11 \rightarrow H11$ 121.7 $Br2 \rightarrow Cu1 \rightarrow Br1$ $97.76 (4)$ $C11 \rightarrow C12 \rightarrow C13$ $122.0 (7)$ $Br4 \rightarrow Cu1 \rightarrow Br3$ $99.91 (4)$ $C11 \rightarrow C12 \rightarrow H12$ 119.0 $Br2 \rightarrow Cu1 \rightarrow Br3$ $96.13 (4)$ $C13 \rightarrow C12 \rightarrow H12$ 119.0 $Br1 \rightarrow Cu1 \rightarrow Br3$ $130.74 (5)$ $C14 \rightarrow C13 \rightarrow C12$ $121.2 (7)$ $C2 \rightarrow S1 \rightarrow C1$ $104.8 (4)$ $C14 \rightarrow C13 \rightarrow H13$ 119.4 $C16 \rightarrow S2 \rightarrow C15$ $103.5 (4)$ $C12 \rightarrow C14 \rightarrow H14$ 121.4 $C9 \rightarrow N1 \rightarrow H1$ 125.0 $C9 \rightarrow C14 \rightarrow H14$ 121.4 $C9 \rightarrow N1 \rightarrow H1$ 125.0 $C9 \rightarrow C14 \rightarrow H14$ 121.4 $C8 \rightarrow N2 \rightarrow H2$ 125.0 $S2 \rightarrow C15 \rightarrow H15C$ 109.5
C4—H4A 0.9300 $C26$ — $C27$ 1.373 (10) $C5$ —C6 1.377 (8) $C26$ —H26 0.9300 $C5$ —C8 1.443 (9) $C27$ —C28 1.381 (9) $C6$ —C7 1.374 (9) $C27$ —H27 0.9300 $Br4$ —Cu1—Br2 139.54 (6) $C12$ —C11—H11 121.7 $Br4$ —Cu1—Br199.30 (4) $C10$ —C11—H11 121.7 $Br2$ —Cu1—Br197.76 (4) $C11$ —C12—C13 122.0 (7) $Br4$ —Cu1—Br399.91 (4) $C11$ —C12—H12 119.0 $Br2$ —Cu1—Br396.13 (4) $C13$ —C12—H12 119.0 $Br1$ —Cu1—Br3 130.74 (5) $C14$ —C13—H12 119.4 $C6$ —S2—C15 103.5 (4) $C12$ —C13—H13 119.4 $C16$ —S2—C15 103.5 (4) $C12$ —C13—H13 119.4 $C8$ —N1—C9 109.9 (6) $C13$ —C14—H14 121.4 $C9$ —N1—H1 125.0 $C9$ —C14—H14 121.4 $C8$ —N2—C10 109.9 (6) $S2$ —C15—H15C 109.5
CSC6 $1.377(8)$ $C26$ H26 0.9300 C5C8 $1.443(9)$ $C27$ C28 $1.381(9)$ C6C7 $1.374(9)$ $C27$ H27 0.9300 Br4Cu1Br2 $139.54(6)$ $C12$ C11H11 121.7 Br4Cu1Br1 $99.30(4)$ $C10$ C11H11 121.7 Br2Cu1Br1 $97.76(4)$ $C11$ C12C13 $122.0(7)$ Br4Cu1Br3 $99.91(4)$ $C11$ C12H12 119.0 Br2Cu1Br3 $96.13(4)$ $C13$ C12H12 119.0 Br1Cu1Br3 $96.13(4)$ $C14$ C13C12 $121.2(7)$ C2S1C1 $104.8(4)$ $C14$ C13H13 119.4 C16S2C15 $103.5(4)$ $C12$ C13H13 119.4 C8N1C9 $109.9(6)$ $C13$ C14H14 121.4 C9N1H1 125.0 $C9$ C14H14 121.4 C8N2C10 $109.9(6)$ $S2$ C15H15C 109.5
CSC8 $1.443 (9)$ $C27C28$ $1.381 (9)$ C6C7 $1.374 (9)$ $C27H27$ 0.9300 Br4Cu1Br2 $139.54 (6)$ $C12C11H11$ 121.7 Br4Cu1Br1 $99.30 (4)$ $C10C11H11$ 121.7 Br2Cu1Br1 $97.76 (4)$ $C11C12C13$ $122.0 (7)$ Br4Cu1Br3 $99.91 (4)$ $C11C12H12$ 119.0 Br2Cu1Br3 $99.91 (4)$ $C13C12H12$ 119.0 Br1Cu1Br3 $96.13 (4)$ $C13C12H12$ 119.0 Br1Cu1Br3 $130.74 (5)$ $C14C13C12$ $121.2 (7)$ C2S1C1 $104.8 (4)$ $C14C13H13$ 119.4 C16S2C15 $103.5 (4)$ $C12C13H13$ 119.4 C8N1C9 $109.9 (6)$ $C13C14C9$ $117.2 (7)$ C8N1H1 125.0 $C9C14H14$ 121.4 C9N1H1 125.0 $C9C14H14$ 121.4 C8N2C10 $109.9 (6)$ $S2C15H15C$ 109.5
C6=C7 $1.3/4$ (9) $C27=H27$ 0.9300 $Br4=Cu1=Br2$ 139.54 (6) $C12=C11=H11$ 121.7 $Br4=Cu1=Br1$ 99.30 (4) $C10=C11=H11$ 121.7 $Br2=Cu1=Br1$ 97.76 (4) $C11=C12=C13$ 122.0 (7) $Br4=Cu1=Br3$ 99.91 (4) $C11=C12=H12$ 119.0 $Br2=Cu1=Br3$ 96.13 (4) $C13=C12=H12$ 119.0 $Br1=Cu1=Br3$ 96.13 (4) $C14=C13=C12$ 121.2 (7) $C2=S1=C1$ 104.8 (4) $C14=C13=H13$ 119.4 $C16=S2=C15$ 103.5 (4) $C12=C13=H13$ 119.4 $C8=N1=C9$ 109.9 (6) $C13=C14=C9$ 117.2 (7) $C8=N1=H1$ 125.0 $C9=C14=H14$ 121.4 $C8=N2=C10$ 109.9 (6) $S2=C15=H15C$ 109.5
Br4Cu1Br2139.54 (6) $C12C11H11$ 121.7Br4Cu1Br199.30 (4) $C10C11H11$ 121.7Br2Cu1Br197.76 (4) $C11C12C13$ 122.0 (7)Br4Cu1Br399.91 (4) $C11C12H12$ 119.0Br2Cu1Br396.13 (4) $C13C12H12$ 119.0Br1Cu1Br3130.74 (5) $C14C13C12$ 121.2 (7)C2S1C1104.8 (4) $C14C13H13$ 119.4C16S2C15103.5 (4) $C12C13H13$ 119.4C8N1C9109.9 (6) $C13C14C9$ 117.2 (7)C8N1H1125.0 $C9C14H14$ 121.4C9N1H1125.0 $C9C14H14$ 121.4C8N2C10109.9 (6) $S2C15H15C$ 109.5C8N2H2125.0 $S2C15H15C$ 109.5
Br4—Cu1—Br199.30 (4)C10—C11—H11121.7Br2—Cu1—Br197.76 (4)C11—C12—C13122.0 (7)Br4—Cu1—Br399.91 (4)C11—C12—H12119.0Br2—Cu1—Br396.13 (4)C13—C12—H12119.0Br1—Cu1—Br3130.74 (5)C14—C13—C12121.2 (7)C2—S1—C1104.8 (4)C14—C13—H13119.4C16—S2—C15103.5 (4)C12—C13—H13119.4C8—N1—C9109.9 (6)C13—C14—C9117.2 (7)C8—N1—H1125.0C9—C14—H14121.4C9—N1—H1125.0C9—C14—H14121.4C8—N2—C10109.9 (6)S2—C15—H15C109.5C8—N2—H2125.0S2—C15—H15A100.5
Br2—Cu1—Br1 $97.76 (4)$ $C11$ —C12—C13 $122.0 (7)$ Br4—Cu1—Br3 $99.91 (4)$ $C11$ —C12—H12 119.0 Br2—Cu1—Br3 $96.13 (4)$ $C13$ —C12—H12 119.0 Br1—Cu1—Br3 $130.74 (5)$ $C14$ —C13—C12 $121.2 (7)$ C2—S1—C1 $104.8 (4)$ $C14$ —C13—H13 119.4 C16—S2—C15 $103.5 (4)$ $C12$ —C13—H13 119.4 C8—N1—C9 $109.9 (6)$ $C13$ —C14—C9 $117.2 (7)$ C8—N1—H1 125.0 $C9$ —C14—H14 121.4 C9—N1—H1 125.0 $C9$ —C14—H14 121.4 C8—N2—C10 $109.9 (6)$ $S2$ —C15—H15C 109.5
Br4—Cu1—Br3 $99.91 (4)$ $C11$ —C12—H12 119.0 Br2—Cu1—Br3 $96.13 (4)$ $C13$ —C12—H12 119.0 Br1—Cu1—Br3 $130.74 (5)$ $C14$ —C13—C12 $121.2 (7)$ C2—S1—C1 $104.8 (4)$ $C14$ —C13—H13 119.4 C16—S2—C15 $103.5 (4)$ $C12$ —C13—H13 119.4 C8—N1—C9 $109.9 (6)$ $C13$ —C14—C9 $117.2 (7)$ C8—N1—H1 125.0 $C9$ —C14—H14 121.4 C9—N1—H1 125.0 $C9$ —C14—H14 121.4 C8—N2—C10 $109.9 (6)$ $S2$ —C15—H15C 109.5
Br2—Cu1—Br3 $96.13 (4)$ C13—C12—H12 119.0 Br1—Cu1—Br3 $130.74 (5)$ C14—C13—C12 $121.2 (7)$ C2—S1—C1 $104.8 (4)$ C14—C13—H13 119.4 C16—S2—C15 $103.5 (4)$ C12—C13—H13 119.4 C8—N1—C9 $109.9 (6)$ C13—C14—C9 $117.2 (7)$ C8—N1—H1 125.0 C9—C14—H14 121.4 C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 $109.9 (6)$ S2—C15—H15C 109.5
Br1—Cu1—Br3 $130.74 (5)$ $C14$ —C13—C12 $121.2 (7)$ C2—S1—C1 $104.8 (4)$ $C14$ —C13—H13 119.4 C16—S2—C15 $103.5 (4)$ $C12$ —C13—H13 119.4 C8—N1—C9 $109.9 (6)$ $C13$ —C14—C9 $117.2 (7)$ C8—N1—H1 125.0 $C13$ —C14—H14 121.4 C9—N1—H1 125.0 $C9$ —C14—H14 121.4 C8—N2—C10 $109.9 (6)$ $S2$ —C15—H15C 109.5
C2—S1—C1 104.8 (4) C14—C13—H13 119.4 C16—S2—C15 103.5 (4) C12—C13—H13 119.4 C8—N1—C9 109.9 (6) C13—C14—C9 117.2 (7) C8—N1—H1 125.0 C13—C14—H14 121.4 C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 109.9 (6) S2—C15—H15C 109.5 C8—N2—H2 125.0 S2—C15—H15A 100.5
C16—S2—C15 103.5 (4) C12—C13—H13 119.4 C8—N1—C9 109.9 (6) C13—C14—C9 117.2 (7) C8—N1—H1 125.0 C13—C14—H14 121.4 C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 109.9 (6) S2—C15—H15C 109.5 C8—N2—H2 125.0 S2 C15 H15A 109.5
C8—N1—C9 109.9 (6) C13—C14—C9 117.2 (7) C8—N1—H1 125.0 C13—C14—H14 121.4 C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 109.9 (6) S2—C15—H15C 109.5 C8—N2—H2 125.0 S2 C15 H15A 100.5
C8—N1—H1 125.0 C13—C14—H14 121.4 C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 109.9 (6) S2—C15—H15C 109.5 C8—N2—H2 125.0 S2 C15 H15A 100.5
C9—N1—H1 125.0 C9—C14—H14 121.4 C8—N2—C10 109.9 (6) S2—C15—H15C 109.5 C8—N2—H2 125.0 S2—C15—H15A 100.5
C8-N2-C10 109.9 (6) S2-C15-H15C 109.5 C8-N2-H2 125.0 S2-C15-H15A 109.5
C8_N2_H2 125.0 S2_C15_H15A 100.5
$C_0 - 1/2 - 112$ 123.0 $S_2 - C_1 - 1113A$ 109.3
C10—N2—H2 125.0 H15C—C15—H15A 109.5
C22—N3—C23 109.6 (6) S2—C15—H15B 109.5
C22—N3—H3 125.2 H15C—C15—H15B 109.5
C23—N3—H3 125.2 H15A—C15—H15B 109.5
C22—N4—C28 111.2 (6) C17—C16—C21 119.4 (7)
C22—N4—H4 124.4 C17—C16—S2 124.3 (6)
C22N4H4124.4C17C16S2124.3 (6)C28N4H4124.4C21C16S2116.3 (6)
C22—N4—H4124.4C17—C16—S2124.3 (6)C28—N4—H4124.4C21—C16—S2116.3 (6)H1E—O1—H1D110 (5)C16—C17—C18119.5 (7)
C22—N4—H4124.4C17—C16—S2124.3 (6)C28—N4—H4124.4C21—C16—S2116.3 (6)H1E—O1—H1D110 (5)C16—C17—C18119.5 (7)H2B—O2—H2A109 (5)C16—C17—H17120.2
C22N4H4124.4C17C16S2124.3 (6)C28N4H4124.4C21C16S2116.3 (6)H1EO1H1D110 (5)C16C17C18119.5 (7)H2BO2H2A109 (5)C16C17H17120.2S1C1H1B109.5C18C17H17120.2

H1B—C1—H1A	109.5	C19—C18—H18	119.2
S1—C1—H1C	109.5	C17—C18—H18	119.2
H1B—C1—H1C	109.5	C18—C19—C20	117.7 (6)
H1A—C1—H1C	109.5	C18—C19—C22	121.6 (7)
C7—C2—C3	117.7 (6)	C20—C19—C22	120.7 (6)
C7—C2—S1	126.4 (6)	C21—C20—C19	120.8 (7)
C3—C2—S1	116.0 (6)	C21—C20—H20	119.6
C4—C3—C2	120.7 (7)	C19—C20—H20	119.6
С4—С3—НЗА	119.7	C16—C21—C20	121.0 (7)
С2—С3—НЗА	119.7	C16—C21—H21	119.5
C3—C4—C5	121.9 (6)	C20—C21—H21	119.5
C3—C4—H4A	119.0	N4—C22—N3	106.5 (6)
C5—C4—H4A	119.0	N4—C22—C19	126.9 (7)
C4—C5—C6	117.7 (6)	N3—C22—C19	126.5 (6)
C4—C5—C8	121.9 (6)	C24—C23—C28	120.8 (7)
C6—C5—C8	120.3 (6)	C24—C23—N3	132.0 (7)
C7—C6—C5	121.2 (6)	C28—C23—N3	107.2 (6)
С7—С6—Н6	119.4	C23—C24—C25	117.3 (7)
С5—С6—Н6	119.4	C23—C24—H24	121.4
C6—C7—C2	120.7 (6)	C25—C24—H24	121.4
С6—С7—Н7	119.7	C24—C25—C26	121.6 (7)
С2—С7—Н7	119.7	С24—С25—Н25	119.2
N2	107.8 (6)	С26—С25—Н25	119.2
N2—C8—C5	126.5 (6)	C27—C26—C25	121.5 (7)
N1—C8—C5	125.7 (6)	С27—С26—Н26	119.2
N1—C9—C14	132.3 (7)	С25—С26—Н26	119.2
N1—C9—C10	106.2 (6)	C26—C27—C28	116.4 (7)
C14—C9—C10	121.5 (7)	С26—С27—Н27	121.8
C11—C10—N2	132.5 (7)	С28—С27—Н27	121.8
C11—C10—C9	121.3 (7)	C23—C28—C27	122.4 (7)
N2—C10—C9	106.1 (6)	C23—C28—N4	105.4 (6)
C12—C11—C10	116.7 (7)	C27—C28—N4	132.1 (7)
C1—S1—C2—C7	2.6 (8)	C15—S2—C16—C17	4.3 (8)
C1—S1—C2—C3	-178.0 (6)	C15—S2—C16—C21	-177.1 (6)
C7—C2—C3—C4	-2.0 (12)	C21-C16-C17-C18	0.0 (12)
S1—C2—C3—C4	178.6 (6)	S2-C16-C17-C18	178.6 (6)
C2—C3—C4—C5	2.9 (12)	C16—C17—C18—C19	-1.1 (12)
C3—C4—C5—C6	-3.2 (11)	C17—C18—C19—C20	2.6 (12)
C3—C4—C5—C8	179.4 (7)	C17—C18—C19—C22	-179.4 (7)
C4—C5—C6—C7	2.7 (11)	C18-C19-C20-C21	-3.1 (12)
C8—C5—C6—C7	-179.9 (7)	C22—C19—C20—C21	178.9 (8)
C5—C6—C7—C2	-1.9 (11)	C17—C16—C21—C20	-0.5 (13)
C3—C2—C7—C6	1.5 (11)	S2-C16-C21-C20	-179.2 (7)
S1—C2—C7—C6	-179.1 (6)	C19—C20—C21—C16	2.1 (13)
C10—N2—C8—N1	0.3 (8)	C28—N4—C22—N3	-1.4 (8)
C10—N2—C8—C5	178.6 (7)	C28—N4—C22—C19	-179.2 (7)
C9—N1—C8—N2	-0.3 (8)	C23—N3—C22—N4	1.1 (8)
C9—N1—C8—C5	-178.6 (7)	C23—N3—C22—C19	178.9 (7)
C4—C5—C8—N2	-176.3 (7)	C18—C19—C22—N4	177.1 (7)

C6—C5—C8—N2	6.4 (11)	C20-C19-C22-N4	-4.9 (12)
C4—C5—C8—N1	1.7 (12)	C18—C19—C22—N3	-0.2 (12)
C6—C5—C8—N1	-175.6 (7)	C20-C19-C22-N3	177.7 (7)
C8—N1—C9—C14	177.7 (8)	C22—N3—C23—C24	-179.4 (8)
C8—N1—C9—C10	0.2 (8)	C22—N3—C23—C28	-0.4 (8)
C8—N2—C10—C11	-177.9 (8)	C28—C23—C24—C25	0.4 (12)
C8—N2—C10—C9	-0.1 (8)	N3-C23-C24-C25	179.2 (8)
N1-C9-C10-C11	178.0 (7)	C23—C24—C25—C26	-0.5 (13)
C14—C9—C10—C11	0.2 (12)	C24—C25—C26—C27	-0.4 (14)
N1-C9-C10-N2	-0.1 (8)	C25—C26—C27—C28	1.2 (13)
C14—C9—C10—N2	-177.9 (7)	C24—C23—C28—C27	0.5 (12)
N2-C10-C11-C12	177.5 (8)	N3-C23-C28-C27	-178.6 (7)
C9—C10—C11—C12	0.1 (12)	C24—C23—C28—N4	178.7 (7)
C10-C11-C12-C13	-0.9 (12)	N3-C23-C28-N4	-0.4 (8)
C11-C12-C13-C14	1.6 (14)	C26—C27—C28—C23	-1.3 (12)
C12—C13—C14—C9	-1.3 (13)	C26-C27-C28-N4	-178.9 (8)
N1-C9-C14-C13	-176.7 (8)	C22—N4—C28—C23	1.1 (8)
C10-C9-C14-C13	0.4 (12)	C22—N4—C28—C27	179.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
C13—H13···Br4 ⁱ	0.93	2.99	3.831 (8)	150
N3—H3···O1 ⁱⁱ	0.86	1.86	2.703 (8)	165
C18—H18····O1 ⁱⁱ	0.93	2.73	3.614 (9)	159
N2—H2…Br3 ⁱⁱⁱ	0.86	2.44	3.275 (6)	162
O1—H1D···Br3 ^{iv}	0.85 (6)	2.55 (7)	3.344 (6)	155
O2—H2A···Br2 ^{iv}	0.83 (4)	2.96 (6)	3.735 (6)	155
O1—H1E…Br1	0.84 (7)	2.53 (7)	3.359 (6)	170
O2—H2B…Br4	0.85 (5)	2.77 (7)	3.597 (6)	166

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*.

Fig. 1

